
NAG C Library Function Document

nag_dorghr (f08nfc)

1 Purpose

nag_dorghr (f08nfc) generates the real orthogonal matrix Q which was determined by nag_dgehrd (f08nec)
when reducing a real general matrix A to Hessenberg form.

2 Specification

void nag_dorghr (Nag_OrderType order, Integer n, Integer ilo, Integer ihi,
double a[], Integer pda, const double tau[], NagError *fail)

3 Description

nag_dorghr (f08nfc) is intended to be used following a call to nag_dgehrd (f08nec), which reduces a real

general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: A ¼ QHQT .
nag_dgehrd (f08nec) represents the matrix Q as a product of ihi � ilo elementary reflectors. Here ilo and
ihi are values determined by nag_dgebal (f08nhc) when balancing the matrix; if the matrix has not been
balanced, ilo ¼ 1 and ihi ¼ n.

This function may be used to generate Q explicitly as a square matrix. Q has the structure:

Q ¼
I 0 0

0 Q22 0

0 0 I

1
A

0
@

where Q22 occupies rows and columns ilo to ihi.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: n – Integer Input

On entry: n, the order of the matrix Q.

Constraint: n � 0.

3: ilo – Integer Input

4: ihi – Integer Input

On entry: these must be the same parameters ilo and ihi, respectively, as supplied to nag_dgehrd
(f08nec).

Constraints:

if n > 0, 1 � ilo � ihi � n;
if n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08nfc

[NP3645/7] f08nfc.1

5: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_dgehrd
(f08nec).

On exit: the n by n orthogonal matrix Q.

6: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint: pda � maxð1; nÞ.

7: tau½dim� – const double Input

Note: the dimension, dim, of the array tau must be at least maxð1; n� 1Þ.
On entry: further details of the elementary reflectors, as returned by nag_dgehrd (f08nec).

8: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_INT_3

On entry, n = hvaluei, ilo = hvaluei, ihi = hvaluei.
Constraint: if n > 0, 1 � ilo � ihi � n;
if n ¼ 0, ilo ¼ 1 and ihi ¼ 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f08nfc NAG C Library Manual

f08nfc.2 [NP3645/7]

7 Accuracy

The computed matrix Q differs from an exactly orthogonal matrix by a matrix E such that

kEk2 ¼ Oð�Þ;

where � is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately 4
3
q3, where q ¼ ihi � ilo.

The complex analogue of this function is nag_zunghr (f08ntc).

9 Example

To compute the Schur factorization of the matrix A, where

A ¼

0:35 0:45 �0:14 �0:17
0:09 0:07 �0:54 0:35

�0:44 �0:33 �0:03 0:17
0:25 �0:32 �0:13 0:11

1
CCA

0
BB@ :

Here A is general and must first be reduced to Hessenberg form by nag_dgehrd (f08nec). The program
then calls nag_dorghr (f08nfc) to form Q, and passes this matrix to nag_dhseqr (f08pec) which computes
the Schur factorization of A.

9.1 Program Text

/* nag_dorghr (f08nfc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */

Integer i, j, n, pda, pdz, tau_len, wr_len, wi_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a=0, *tau=0, *wi=0, *wr=0, *z=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define Z(I,J) z[(J-1)*pdz + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define Z(I,J) z[(I-1)*pdz + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08nfc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08nfc

[NP3645/7] f08nfc.3

Vscanf("%ld%*[^\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdz = n;

#else
pda = n;
pdz = n;

#endif
tau_len = n - 1;
wr_len = n;
wi_len = n;

/* Allocate memory */
if (!(a = NAG_ALLOC(n * n, double)) ||

!(tau = NAG_ALLOC(tau_len, double)) ||
!(wi = NAG_ALLOC(wi_len, double)) ||
!(wr = NAG_ALLOC(wi_len, double)) ||
!(z = NAG_ALLOC(n * n, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");

/* Reduce A to upper Hessenberg form H = (Q**T)*A*Q */
f08nec(order, n, 1, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08nec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Copy A into Z */
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= n; ++j)

Z(i,j) = A(i,j);
}

/* Form Q explicitly, storing the result in Z */
f08nfc(order, n, 1, n, z, pdz, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08nfc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Calculate the Schur factorization of H = Y*T*(Y**T) and form */
/* Q*Y explicitly, storing the result in Z */

/* Note that A = Z*T*(Z**T), where Z = Q*Y */
f08pec(order, Nag_Schur, Nag_UpdateZ, n, 1, n, a, pda,

wr, wi, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08pec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print Schur form */

f08nfc NAG C Library Manual

f08nfc.4 [NP3645/7]

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, "Schur form", 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print Schur vectors */
Vprintf("\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

z, pdz, "Schur vectors of A", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (tau) NAG_FREE(tau);
if (wi) NAG_FREE(wi);
if (wr) NAG_FREE(wr);
if (z) NAG_FREE(z);

return exit_status;
}

9.2 Program Data

f08nfc Example Program Data
4 :Value of N
0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35

-0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

9.3 Program Results

f08nfc Example Program Results

Schur form
1 2 3 4

1 0.7995 0.0060 -0.1144 -0.0336
2 0.0000 -0.0994 -0.6483 -0.2026
3 0.0000 0.2478 -0.0994 -0.3474
4 0.0000 0.0000 0.0000 -0.1007

Schur vectors of A
1 2 3 4

1 -0.6551 -0.3450 -0.1037 0.6641
2 -0.5236 0.6141 0.5807 -0.1068
3 0.5362 0.2935 0.3073 0.7293
4 -0.0956 0.6463 -0.7467 0.1249

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08nfc

[NP3645/7] f08nfc.5 (last)

	f08nfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	n
	ilo
	ihi
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

