f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nfc

1

NAG C Library Function Document
nag_dorghr (f08nfc)

Purpose

nag_dorghr (f08nfc) generates the real orthogonal matrix ¢ which was determined by nag_dgehrd (f08nec)
when reducing a real general matrix A to Hessenberg form.

2

Specification

void nag_dorghr (Nag_OrderType order, Integer n, Integer ilo, Integer ihi,

3

double a[], Integer pda, const double tau[], NagError *fail)

Description

nag_dorghr (fO8nfc) is intended to be used following a call to nag dgehrd (f08nec), which reduces a real
general matrix A to upper Hessenberg form H by an orthogonal similarity transformation: A = QHQ" .
nag_dgehrd (f08nec) represents the matrix () as a product of i;; — i;, elementary reflectors. Here 4;, and
i; are values determined by nag dgebal (f08nhc) when balancing the matrix; if the matrix has not been
balanced, i;, = 1 and i;; = n.

This function may be used to generate () explicitly as a square matrix. () has the structure:

I 0 0
Q=10 Qn 0
0 0 I

where (), occupies rows and columns %, to %y,;.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_ RowMajor or Nag_ColMajor.

n — Integer Input
On entry: n, the order of the matrix Q.

Constraint: n > 0.

ilo — Integer Input
ihi — Integer Input

On entry: these must be the same parameters ilo and ihi, respectively, as supplied to nag dgehrd
(fO8nec).

Constraints:

ifn>0, 1 <ilo <ihi<n;
if n =0, ilo =1 and ihi = 0.

[NP3645/7] f08nfe.1

f08nfc NAG C Library Manual

5: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (4, j)th element of the matrix A is stored in a[(j — 1) x pda + 4 — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag dgehrd
(f08nec).

On exit: the n by n orthogonal matrix Q).

6: pda — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraint. pda > max(1,n).

7: tau[dim| — const double Input
Note: the dimension, dim, of the array tau must be at least max(1,n — 1).
On entry: further details of the elementary reflectors, as returned by nag dgehrd (f08nec).

8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

NE_INT 3

On entry, n = (value), ilo = (value), ihi = (value).
Constraint: if n > 0, 1 <ilo < ihi < n;
if n =0, ilo = 1 and ihi = 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

f08nfe.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08nfc

7 Accuracy
The computed matrix () differs from an exactly orthogonal matrix by a matrix E such that
1E]l, = O(e),

where ¢ is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately %q3, where q = i;,; — 1.

The complex analogue of this function is nag zunghr (f08ntc).

9 Example

To compute the Schur factorization of the matrix A, where

0.35 0.45 -0.14 -0.17
0.09 007 -0.54 035
—-0.44 —-0.33 —-0.03 0.17
025 -032 -0.13 0.11

A:

Here A is general and must first be reduced to Hessenberg form by nag_dgehrd (f08nec). The program
then calls nag_dorghr (f08nfc) to form (), and passes this matrix to nag_dhseqr (f08pec) which computes
the Schur factorization of A.

9.1 Program Text

/* nag_dorghr (f08nfc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, n, pda, pdz, tau_len, wr_len, wi_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *tau=0, *wi=0, *wr=0, *z=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al[(J-1)*pda + I - 1]

#define Z(I,J) z[(J-1)*pdz + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + J - 1]

#define Z(I,J) z[(I-1)*pdz + T - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08nfc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("sx["\n] ");

[NP3645/7] f08nfc.3

f08nfc NAG C Library Manual

Vscanf ("%1d%*["\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;
pdz = n;
#else
pda = n;
pdz = n;
#endif
tau_len = n - 1;
wr_len = n;
wi_len = n;

/* Allocate memory */

if (!(a = NAG_ALLOC(n * n, double)) ||

tau = NAG_ALLOC(tau_len, double)) ||
wi = NAG_ALLOC(wi_len, double)) ||
wr = NAG_ALLOC(wi_len, double)) ||
z = NAG_ALLOC(n * n, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
3
/* Read A from data file x/
for (i = 1; 1 <= n; ++1)
{

for (§ = 1; j <= n; ++j)
Vscanf ("$1f", &A(i,3));
¥

Vscanf ("s*[*\n] ");

/* Reduce A to upper Hessenberg form H = (Q**T)*AxQ */
fO08nec(order, n, 1, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08nec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Copy A into Z */
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= n; ++3)
z(i,3) = A(i,3);

}

/* Form Q explicitly, storing the result in Z */
f08nfc(order, n, 1, n, z, pdz, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08nfc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Calculate the Schur factorization of H = Y*T*(Y**T) and form x/
/* Q*Y explicitly, storing the result in Z */

/* Note that A = Z*T*(Z*xT), where Z = Q*Y */
fO08pec(order, Nag_Schur, Nag_UpdateZz, n, 1, n, a, pda,
wr, wi, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08pec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print Schur form =*/

f08nfe.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

E

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
a, pda, "Schur form", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print Schur vectors */

Vprintf ("\n") ;

x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, "Schur vectors of A", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
ND:

if (a) NAG_FREE (a);

if (tau) NAG_FREE(tau);
if (wi) NAG_FREE(wi);
if (wr) NAG_FREE (wr) ;
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f0

8nfc Example Program Data
4 :Value of N

0.35 0.45 -0.14 -0.17
0.09 0.07 -0.54 0.35
0.44 -0.33 -0.03 0.17
0.25 -0.32 -0.13 0.11 :End of matrix A

9.3 Program Results

f0

8nfc Example Program Results

chur form
1 2 3 4
0.7995 0.0060 -0.1144 -0.0336
0.0000 -0.0994 -0.6483 -0.2026
0.0000 0.2478 -0.0994 -0.3474
0.0000 0.0000 0.0000 -0.1007

chur vectors of A
1 2 3 4
-0.6551 -0.3450 -0.1037 0.6641
-0.52306 0.6141 0.5807 -0.1068
0.5362 0.2935 0.3073 0.7293
-0.0956 0.6463 -0.7467 0.1249

f08nfc

[NP3645/7]

f08nfc.5 (last)

	f08nfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	n
	ilo
	ihi
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_INT_3
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

